%0 Journal Article %A 张庭瑜 %A 毛忠安 %A 孙增慧 %T 基于径向基神经网络耦合确定性指数的滑坡易发性分区研究 %D 2021 %R 10.11988/ckyyb.20200756 %J 新澳门游戏网站入口 院报 %P 64-72 %V 38 %N 11 %X 滑坡易发性分区是预测滑坡的有效方法。利用径向基神经网络模型(RBFNN模型)耦合确定性指数(CF指数)构建混合模型(RBFNN-CF模型),开展陕西省汉中市城固县滑坡易发性分区研究。首先选取坡度、坡向、平面曲率、剖面曲率、高程、年平均降雨量、道路缓冲区、水系缓冲区、断层缓冲区、NDVI和地层岩组作为滑坡诱发因子,计算对应的CF指数并量化诱发因子;其次将野外调查的184个滑坡数据按照7∶3的比例划分为训练数据和测试数据,分别利用RBFNN-CF和RBFNN模型绘制滑坡易发性分区图;最后利用受试者工作特征曲线(ROC曲线)下的面积评估和对比分区的结果及模型的分类能力。结果表明:RBFNN-CF模型的分类能力和泛化性均强于RBFNN模型,值得在研究区推广,得到的滑坡易发性分区图可为当地的滑坡防治工作提供参考。 %U http://ckyyb.crsri.cn/CN/10.11988/ckyyb.20200756