新澳门游戏网站入口 院报 ›› 2025, Vol. 42 ›› Issue (2): 165-171.DOI: 10.11988/ckyyb.20231150

• 水利信息化 • 上一篇    下一篇

基于NDVI密度分割的蓝藻水华面积校正

王雅萍1(), 徐喜飞1,2, 李家国2(), 何湜1   

  1. 1 河南理工大学 测绘与国土信息工程学院,河南 焦作 454003
    2 中国科学院 空天信息创新研究院,北京 100094
  • 收稿日期:2023-10-19 修回日期:2024-02-24 出版日期:2025-02-01 发布日期:2025-02-01
  • 通信作者:
    李家国(1982-),男,安徽合肥人,副研究员,博士,主要从事水环境遥感研究。E-mail:
  • 作者简介:

    王雅萍(1986-),女,河南焦作人,副教授,博士,主要从事水环境遥感、空间数据处理与应用等方面研究。E-mail:

  • 基金资助:
    河南省科技攻关项目(232102210043); 河南理工大学青年骨干教师资助计划项目(2023XQG-12)

Correction of Cyanobacteria Bloom Area Based on NDVI Density Segmentation

WANG Ya-ping1(), XU Xi-fei1,2, LI Jia-guo2(), HE Shi1   

  1. 1 School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
    2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
  • Received:2023-10-19 Revised:2024-02-24 Published:2025-02-01 Online:2025-02-01

摘要:

在水华遥感监测领域,水华面积是评估水体水华严重程度的重要指标,也是有关部门采取防治措施和确定应急响应等级的关键信息。针对中低分辨率影像采用传统方法估算水华面积精度较差的问题,以太湖为研究区,对比Sentinel-2、Sentinel-3数据提取水华面积的差异性,分析了Sentinel-3影像NDVI与混合像元中水华面积占比的关系,构建了基于NDVI密度分割法的蓝藻水华面积校正模型,对Sentinel-3提取的水华面积进行了校正;并对比分析了利用该模型与像元累加法、藻华像元生长算法进行水华面积统计与高分辨率Sentinel-2影像统计结果的一致性。研究结果表明:构建的校正模型在Sentinel-3影像水华面积估算中准确度和可靠性优于传统方法,能够有效提升该影像在水华监测领域的应用价值。

关键词: NDVI密度分割, 蓝藻水华面积, Sentinel-3 OLCI影像, 太湖

Abstract:

In the remote sensing monitoring for cyanobacteria blooms, the bloom area is a critical indicator for assessing the severity of the bloom and is crucial for relevant authorities in selecting preventive measures and determining emergency response levels. Traditional methods using medium-to-low-resolution imagery has limited precision in estimating bloom area. To address this issue, the cyanobacteria bloom areas of Taihu Lake as the study area extracted from Sentinel-2 and Sentinel-3 data were compared. Furthermore, the relationship between the NDVI from Sentinel-3 imagery and the cyanobacteria bloom area proportion within mixed pixels were analyzed. Based on these analyses, a corrected model for estimating bloom area was established using the NDVI density segmentation method to refine the bloom area extracted from Sentinel-3 images. The statistical results of bloom areas derived from Sentinel-3 with correction, Sentinel-3 without correction, and Sentinel-2 were compared and analyzed. The findings demonstrate that the corrected model significantly improves the accuracy and reliability of bloom area estimation using Sentinel-3 imagery compared to traditional methods, thereby enhancing its practical application value in cyanobacteria bloom monitoring.

Key words: NDVI density segmentation, cyanobacteria bloom area, Sentinel-3 OLCI image, Taihu Lake

中图分类号: 

Baidu
map